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ABSTRACT 

      Integral Abutment Bridges are becoming more popular in Europe, but the traditions differ from country to 
country. This leads to different technical solutions for the same problem in each country. 

In this paper some of the different solutions that are used in Europe are presented. 
The Eurocodes are set of technical rules for the structural design of construction works. Since 2010 the 

Eurocodes are mandatory for specification of public works and are intended to be the standard used in all the 
EU zone for the design of construction works. There are no special rules for bridges with integral abutments in 
the Eurocodes for integral abutment bridges. It is up to the designer to come up with a design that complies 
with the rules in the Eurocodes that are common with other type of bridges. In this paper some of the aspects 
of designing piles according to Eurocodes are described. 
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Precast (PC) and prestressed (PS) concrete piles are not commonly used in Europe, with the 
exception of Sweden. In Sweden, PC/PS concrete piles are common in all bridge types, 
including short FIAB, due to their low cost and ready availability. In the USA, these pile types 
are typically only used for shorter span FIAB. 

Steel Core Piles 
Although not common, steel core pipe piles have been used for FIAB in Europe. The pile 

system consists of a cover pipe, injected concrete and a core steel pile. Drilling is performed 
down to the bedrock. The cover pipe is drilled 300-500 mm into the rock. When the cover pipe 
is placed in the hole the interior is rinsed and then injected with concrete. The steel core is then 
installed. After inspection and driving pile to refusal the pile is cut to the right length. A pressure 
distribution plate is then fit to the top of the pile. In this way the very slender steel pile can be 
used and the concrete stabilizes the pile from buckling. A few FIAB have been built in Sweden 
with steel core piles.  

Figure 6. Sketch of steel core pile. 

The Eurocodes 

      The Eurocodes are set of technical rules for the structural design of construction works. 
Since 2010 the Eurocodes are mandatory for specification of public works and are intended to 
be the standard used in all the EU zone for the design of construction works. The Eurocodes are 
published separate European Standards each section having a number e.g. EN 1990 Basis of 
structural design, EN 1991 Actions on structures, 1992 Design of Concrete Structures and EN 
1993 Design of Steel Structures. There are 10 sections published and each section consists of 
several parts. 

There are no specific parts of the Eurocodes that deals with integral abutments nor are there 
any specific rules in the different parts. It is up to the designer to come up with a design that 
complies with the rules in the Eurocodes that are common with other type of bridges. The parts 
of the Eurocodes that the designer needs to look into when designing piles for integral abutment 
bridges are: 
EN 1990 Basis of structural design 
EN 1991-2Actions on structures - Part 2: Traffic loads on bridges 
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EN 1991-5 Actions on structures - Part 1-5: General actions - Thermal actions 
EN 1993-2 Steel bridges 
EN 1993-5 Design of steel structures - Part 5: Piling 
EN 1997-1 Geotechnical design - Part 1: General rules 

Design of piles 

Philosophies 

 Integral abutment bridges may be generally designed based on two different concepts. 
1. Low flexural stiffness of piles / low degree of restraint

If the integral abutment is supported by one row of flexible piles the superstructure can be
analyzed as a beam with simple hinged supports. 
2. High flexural stiffness of piles / high degree of restraint

If the integral abutment is supported on stiffer piles or spread footing the rotation of the
superstructure and to some extent the displacement will be restraint and a large support moment 
will be distributed to the superstructure. This means that the connection between the abutment 
and the superstructure needs to be stronger and more robust but the field moment of the 
superstructure is somewhat shifted to the support and a more slender superstructure can be 
constructed. If the piles are relatively short and stiff enough the structure act like a frame and the 
soil-bridge interaction is not as vital as in bridges with more slender piles. This type is not 
discussed further in this paper. 

Loading 

     Bridge loading is the same for integral abutment bridges as other bridges. The difference is 
that some loads cause forced displacement and rotations at the top of the piles and this gives 
unwanted strains in the piles. The stiffness behind the abutment reliefs these strains to some 
extent depending on confinement, water content and friction. 

Thermal loads 

    Two types of temperature loads needs to be considered. First, a uniform temperature change 
which means that the abutment is displaced horizontally. The magnitude of the bridge 
movement depends on the mean temperature of the structure when the superstructure is locked 
to the abutments. Also uneven temperature distribution in the superstructure cause movements 
of the piles as the beam end rotates. The mean bridge temperature is dependent on the ambient 
air temperature, wind effect and solar radiation. Temperature gradients through the depth of the 
bridge beams generate secondary bending moments due to the fact that the centroid of the 
temperature distribution curve and the centroid of the cross-section of the bridge beams may not 
coincide. The maximum temperature differentials (with positive gradient) occurs when the 
concrete deck slab is exposed to sun radiation during the summer and winter, resulting in a 
concrete deck slab that is warmer than the steel beams. The minimum temperature differential 
(with negative gradient) occurs when the concrete deck slab is suddenly drenched with cold rain 
or snow, thus cooling the concrete deck slab at a faster rate than the steel beams. The rotation 
will also cause a horizontal displacement of the pile top if there is a vertical distance between 
the centre of gravity of the composite cross-section and lower edge of the abutment wall where 
the pile is clamped. 
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Soil with cohesion (clay) 

If the soil surrounding the soil is considered to be an elastic continuum with Young´s modulus E 
and Poisson´s ratio of 0.5 the lateral soil modulus, ku, can be derived e.g. according to Baguelin 
(1997). If the Young´s modulus is supposed to be E=50cu, where cu is the cohesion the lateral 
soil modulus can be written: 

ku =k0cu/b,  157≤k0≤242  (2) 

      For long term loading the creep effect must be considered. This done approximately by 
reducing the lateral soil stiffness: 

ku =50cu/b (3) 

The pressure against the pile is described by the expression: 

p=kuu  (4) 

      Where u is the lateral displacement of the pile. The pressure p is limited to a value py that for 
drained conditions can be calculated by: 

py=Nccu  (5) 

       Where Nc is a constant that varies between 8-12 for deep soil layers (<3b) and decreases to 
2 for layers closer to the surface. For short time loading Nc=9can be used and for long time 
loading the creep is considered by a lower value of Nc=6.  

Cohesion-less soil (friction soil) 

       For cohesion-less soils there are no unambiguous expression that describes the relation 
between the lateral soil modulus and the strength parameter �´. The relationship between lateral 
displacement and soil pressure against the pile is therefor based on suggested empirical “p-y” 
curves based on experimental data. There are numerous suggestions on different “p-y” curves 
among them are Reese (1994). The “p-y” curves are un-linear and a soil model with linear curve 
based the initial slope of the “p-y” curve suggested by Reese et. al.(1994) is used here. The 
lateral soil modulus is half of the initial modulus according to Reese et. al.(1994) and is 
expressed as follows: 

Ku=1/2ksz  (6) 

where ksis given in Table Ⅲ. 

TABLE Ⅲ.  VALUES FORTHE CONSTANT KsFOR LATERAL SOIL MODULUS ACCORDING TO REESE 
ET. AL. (2007) 
Water[MN/m3] Sand above water table [MN/m3] 

Loose sand 5 7 
Medium dense sand 16 24 
Dense sand 34 61 
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Initial imperfections and second order moments 

     When designing piles second order effects are taken into consideration. This is done by 
enlarging moment along the pile and is depending on the initial imperfections of the pile.  
The initial imperfection of the pile can be assumed according to Table 5.1 in EN 1993-1-1 and 
is:1/200 

e0/lc=1/200  (8) 

for steel pipe piles that are cold formed. For piles with H-profile the value is 1/300 for strong 
axis bending and 1/250 for weak axis bending. 

Concluding remarks 

       This paper describes some of issues that have to be dealt with when designing steel piles for 
integral abutment bridges, but is far from complete. For a more comprehensive material about 
designing integral abutments according to Eurocodes the reader can look into the design guide 
from the INTAB project Feldman et. al 2010. 
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