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ABSTRACT 

Unrestrained  economic growth  raises  the  question  of  how    mankind  will  deal  with  its 
resources in the future. Resources mean not only materials, energy and environment but also 
aesthetics and culture heritage. 

Bridges are important elements of the public infrastructure system. Their dimensions and 
scale require a responsible and creative approach at the conceptual design – the so-called “birth 
stage of a bridge”. 

In the following article, three important design criteria will be discussed: resource consumption, 
structural robustness and the contribution to the culture heritage. 
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NATURE AS TEACHER 

Straight lines, planar surfaces and rectangular angels are unknown by nature. 
Biological structures, as a result of long evolution, develop based on criteria that differ 
from those used by civil engineers when designing structures. Trees and bones are 
always strengthened at areas exposed to large forces by the process called “adaptive 
growth” so that stress concentrations  are  avoided.  The  nature  avoids  redundancy 
(waste  of   material)  and overloading. The result is a very strong and optimized 
natural structure. Compared to many technical structures natural structures are 
characterised by means of a continuous form based on an efficient flow of forces. (see 
Figure 1). 

Figure 1. Distribution of principle stresses inside a bone joint 
(Nachtigall et al., 2000) 

WEIGHT AS A CHALLENGE 

The efficiency of bridge structures, however, highly depends upon the permanent 
loads, as these utilize a large part of the load-bearing capacity. Only a relative small 
part of the structural load bearing capacity is available for carrying traffic loads. In the 
case of conventional road bridges made of concrete, permanent loads have comprise up 
to 70% of the total load. In the case of filigree pedestrian bridges made of concrete 
and/or steel, permanent and non-permanent loads comprise a nearly equal share on 
the total loads carried by the bridge.  

Due to the worldwide declining availability of resources and the ever-increasing 
impact on the environment caused by pollutants and waste, the optimized use of 
resources and energy in the construction industry is becoming increasingly important. 
After all, the construction industry consumes about 35% of energy, causes about 35% 
of emissions, and uses about 50% of resources (Jischa, 2007). Therefore, the 
environmental and social impact of technical solutions must have priority in the future. 
In the automotive and aircraft industry, the material consumption has been continuously 
reduced by the introduction of new structural concepts (e.g. integral design) and by 
adoption of new materials, such as carbon fibre composites. 
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As a parameter for the comprehensive efficiency of structures the following 
characteristic values are available: 

a. Breaking length L:

L = f/γ (1) 

f – strength [N/mm2]
γ – density [kN/m3]

Examples:  
concrete (C 20/25 to C 50/60): Lc = 1,0km 
steel (S 235 to S 460):              Ls = 4,5 km 

b. Value of lightweight (in german: „LBK“):

LBK = Ftotal/Fg (2)  

Ftotal – internal force due to total load [kN] 
Fg – internal force due to dead load [kN] 

c. Efficiency of embodied energy E:

E = e/f (3) 

e – embodied energy [MJ/kg] 
f – strength [N/mm2] 

Examples: 
concrete (C 20/25 to C 50/60):Ec = 3,5 x 10-2 MJ mm2/N kg 
steel (S 235 to S 460):Es = 7,5 x 10-2 MJ mm2/N kg 

Above examples clearly show that steel is better than concrete concerning load-
bearing efficiency, while neglecting the embodied energy. Taking into account 
embodied energy concrete structures promotes more sustainable solutions. 

Efficient materials, computer-based manufacturing facilities, and the development 
of new structural systems can lead to a relative reduction in the use of resources. The 
1,177 m long Ting Kau Bridge in Hong Kong is a prominent example for such a new 
structural concept. Three slender towers like the masts of a sailing boat are braced by 
cables in the longitudinal and transverse directions of the bridge. Therefore the 
slenderness of the towers appear well- proportioned. Furthermore, the braced structure 
gains robustness against the significant potential typhoon and earthquake loads (see 
Figure 2). 
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Figure 2. Ting Kau Bridge in Hong Kong, China 

Modern stadia roofs are characterized by a minimized self weight. For example, Jörg 
Schlaich invented a completely new structural system for covering big stadia realized 
for the first time in Stuttgart in 1993. The principle of the design came from the spokes 
wheel of a bicycle (in german: „Speichenrad“). Notably, prestressed high strength 
cables have the capacity to bridge large spans with a minimum amount of material they 
are very exp. However, they are very expensive, if they are back-anchored. To 
overcome this, looped cable roofs combine the favorable characteristics of cable and 
membrane structures. Many such looped cable roofs have been built worldwide. One 
of the biggest is the World Cup stadium in Cape Town which has the capacity of 64.000 
spectators (see Figure 3). 

Figure 3. Cape Town Stadium in Kapstadt, South Africa 

PPORTUNITIES IN MONOLITHIC CONCRETE 

Eduardo Torroja, the genius spanish engineer and instructor writes about concrete in 
his book “Die Logik der Form” (Torroja, 1961): "To the classical builder, concrete is 
thus a moldable material which has yet to turn to stone. However this is not happening 
within mutually independent splices held together by ashlars, but within enormous 
monoliths." In terms of concrete bridge construction, unfortunately Torroja’s 
expectation has only been fulfilled. Although predestinated for a marginally monolithic 
system, special building techniques like incremental launching and the precast method, 
concerns about uncontrolled cracking as a result of constraint stresses have hindered 
the development of jointless constructions. Only sporadically and together with very 
innovative owners has been possible to build some trendsetting bridges in Germany 
using some of these concepts (see Figure 4). 
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In order to measure deformations and their influence on the backfill, a large-scale 
test was executed in the testing facilities at Landesgewerbeanstalt Bayern, a public-
law corporation based in Nuremberg. A modified backfill was installed in a 8,0 m long, 
3,0 m wide and 5,0 m deep testing pit. With these dimensions, it was possible to 
simulate one part of an abutment subdivided in longitudinal bridge direction. Physical 
testing results were confirmed with numerical modelling applying non-linear 
calculations with the FE-system PLAXIS at Coburg University. 

Earth pressure on the abutment wall arises exclusively when soil deformations 
occur towards the backfill, which happens in summer. In the winter, the modified 
backfill keeps its stability. No significant tensile forces were measured inside the 
geogrid. Vertical deformations of the surface were first detected at wall head 
movements of about 120 mm. In that case, a fast disapating uplift of 10 mm occurred 
2,0 m behind the abutment wall. The test showed that the surface deformations, even 
under excessive wall movements, can significantly reduced by using  an  optimal 
installed  backfill  and  a  sufficiently  dimensioned layer  of  polystyrene. 

Because of this, no dangerous deformations at the surface of the backfill were 
predicted under 

expected serviceability loads. 
This special “Coburg abutment” has been installed a number of times. The largest 

project so far is the Taxiway Bridge East 1 at Frankfurt Airport constructed in 2012 (see 
Figure 8 and 9). The three span T-shaped bridge with a 92 m length was designed for a 
total load of 750 tons to accommodate current aircraft models. The overall deck area 
is nearly 20.000 m2. Hence, 

this bridge is one of the largest integral bridges in Europe (Steiger et al., 2012). 

Figure 8. Taxiway-Bridge East 1 at Figure 9. Backfill under construction 
Frankfurt Airport, Germany 

c) Case 3: curved and rigid
The advantage of curved bridges is that the superstructure can “escape” 

transversally. Therefore, the constraint stresses decrease depending on the increasing 
angle α and the decreasing stiffness of the superstructure and the piers. The constraint 
stresses are a fraction of those of a straight bridge (see Figure 10). 
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Figure 10. Comparison of maximum constraint stresses�
(Pötzl et al., 2005) 

One  of  the  most  famous  and  curved  bridges  is  the  526  m  long  Sunniberg-
Bridge  in Switzerland designed by Christian Menn (see Figure 11). 

Figure 11. Sunniberg-Bridge near Klosters, Switzerland 

The second classification („topography “) concerns the situation of the gradient 
over ground. With increasing height H of the bridge, the span l naturally becomes larger. 
This leads, however, to a disproportional increase of the height h and EA (see 
equation (4)), as well as the constraint stresses (see Figure 12). A goal of conceptual 
design must be to use the topographic conditions consistently for the reduction of the 
constraint stresses. 
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Figure 16. Stöbnitz valley bridge (visualization) near Merseburg, Germany 

CONCLUSION 

Joint-less bridges give three convincing answers to future requirements in bridge 
design: 

1. With regard to the embodied energy of concrete in combination with the
loadbearing efficiency concrete is an old and very young respectively sustainable 
material. 

2. Joint-less bridges are durable structures without any sensitive components
combined 

with small maintenance costs and a high level of redundancy. 
3. With regard to the aesthetics joint-less bridges offer greater creative freedom at

the conceptual design stage and give the opportunity to demonstrate   that each 
bridge much to be considered important, as it transforms the landscape. 

This means the concept „Less is more“. It should be the motto for the future. Klaus 
Stiglat, a civil engineer and cartoonist gives his own but not serious answer: „Due to 
the low budget, we will install the cables five years later“ (see Figure 17). 

Figure 17. Cartoon to „Less is more“ (Siglat, 2010) 
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